Published in

American Institute of Physics, Applied Physics Letters, 26(111), p. 261103

DOI: 10.1063/1.4991025

Links

Tools

Export citation

Search in Google Scholar

Tamm plasmon sub-wavelength structuration for loss reduction and resonance tuning

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We have demonstrated experimentally and theoretically that losses in Tamm plasmon structures can be reduced by using a subwavelength structuration of the metal layer. The structures consist of a GaAs/Al0.95Ga0.05As Bragg reflector covered with a sub-wavelength silver grating. An active quantum dot layer is inserted to perform photoluminescence experiments. Experimental results show that the quality factor of the Tamm plasmon mode with grating increases substantially, with respect to the same structure without a grating. Moreover, a fine-tuning of the Tamm spectral position is obtained by changing the grating parameters. Finite element method simulations are in good agreement with the experimental values. Our results will promote the realization of lasing with the TP based devices at room temperature.