Published in

American Chemical Society, Biochemistry, 3(52), p. 557-567, 2013

DOI: 10.1021/bi3013092

Links

Tools

Export citation

Search in Google Scholar

Identification of the Catalytic Mg<sup>2+</sup> Ion in the Hepatitis Delta Virus Ribozyme

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pKa shifted towards neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the pre-cleavage ribozyme identified a Mg2+ ion that interacts through its partial hydration sphere with the G25•U20 reverse wobble. In addition, this Mg2+ ion is in position to directly coordinate the nucleophile, the 2’-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2’-hydroxyl. To test the role of the active site Mg2+ ion, we replaced the G25•U20 reverse wobble with an isosteric A25•C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg2+ binding could be adversely affected by the mutation. Kinetic analysis and molecular dynamics of the A25•C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant are inverted relative to the profiles for wild-type ribozyme, suggesting that the A25•C20 double mutant has lost the active site metal ion. Overall, these studies support a model wherein the partially hydrated Mg2+ positioned at the G25•U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile.