Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 4(275), p. F467-F477, 1998

DOI: 10.1152/ajprenal.1998.275.4.f467

Links

Tools

Export citation

Search in Google Scholar

Relevance of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mammalian nephrogenesis begins by the reciprocal interaction of the ureteric bud with the undifferentiated mesenchyme. The mesenchyme differentiates into an epithelial phenotype with the development of the glomerulus and proximal and distal tubules. At the same time, the mesenchyme stimulates the branching morphogenesis of the ureteric bud that differentiates into the collecting ducts. These inductive interactions and differentiation events are modulated by a number of macromolecules, including the extracellular matrix (ECM), integrin receptors, and cell adhesion molecules. Many of these macromolecules exhibit spatiotemporal developmental regulation in the metanephros. Some are expressed in the mesenchyme, whereas others appear in the ureteric bud epithelia. The molecules expressed in the mesenchyme or at the epithelial:mesenchymal interface may serve as ligands while those in the epithelia serve as the receptors. In such a scenario the ligand and the receptor would be ideally suited for epithelial:mesenchymal paracrine/juxtacrine interactions that are also influenced by RGD sequences and Ca2+binding domains of the ECM proteins and their receptors. This review addresses the role of such interactions in metanephric development.