Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Applied Physiology, 4(91), p. 1512-1519, 2001

DOI: 10.1152/jappl.2001.91.4.1512

Links

Tools

Export citation

Search in Google Scholar

Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats

Journal article published in 2001 by Clinton R. Bruce, Jong Sam Lee, John A. Hawley ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We determined the effect of an acute bout of swimming (8 × 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise ( P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 ± 31 vs. 247 ± 16 μmol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise ( P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 ± 0.05 and 0.32 ± 0.04 to 0.63 ± 0.08 vs. 0.57 ± 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO ( P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (∼45%) and CHO-supplemented (∼115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.