Published in

American Physiological Society, Journal of Applied Physiology, 6(78), p. 2153-2160

DOI: 10.1152/jappl.1995.78.6.2153

Links

Tools

Export citation

Search in Google Scholar

Lung and respiratory impedance at low frequency during mechanical ventilation in rabbits

Journal article published in 1995 by M. Rotger, R. Peslin, D. Navajas, R. Farre ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have tested in eight rabbits the feasibility of measuring respiratory (Zrs) and lung (ZL) impedances in the low-frequency domain, including below the breathing frequency (fb), during conventional mechanical ventilation (CMV). The animals were tracheotomized and ventilated with a tidal volume (VT) of 20 ml at a fb of 1 Hz. The excitation signal was provided by a flow generator connected in parallel with the ventilator; it included six components ranging from 0.45 to 14.8 Hz, which met the neither-sum-nor-difference criterion of B. Suki and K. Lutchen (IEEE Trans. Biomed. Eng. 39: 1142-1151, 1992) to minimize the influence of nonlinearities. Zrs and ZL were also measured at the same mean lung volume and with the same excitation signal both during apnea and when the ventilator signal was replaced by a sine wave with the same VT and fb (SMV). The real parts (Re) of both Zrs and ZL, as well as the effective elastances, were significantly larger during apnea than during CMV and SMV over the whole frequency range. Re(Zrs) and Re(ZL) were similar during CMV and SMV above fb but they were lower during CMV at 0.45 Hz. The latter difference seems to be related to the presence of harmonics of fb and of additional frequency components due to pulse amplitude modulation. We conclude that, because of nonlinearities, it is feasible to measure Zrs and ZL during CMV only at and above fb.