Published in

American Physiological Society, Journal of Applied Physiology, 3(78), p. 938-947

DOI: 10.1152/jappl.1995.78.3.938

Links

Tools

Export citation

Search in Google Scholar

T model partition of lung and respiratory system impedances

Journal article published in 1995 by M. Rotger, R. Farre ORCID, R. Peslin, D. Navajas
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of this work was to demonstrate that the three compartments of the lung T network and the chest wall impedance (Zcw) can be identified from input and transfer impedances of the respiratory system if the pleural pressure is recorded during the measurements. The method was tested in six healthy volunteers in the range of 8–32 Hz. The impedances resulting from the decomposition confirm the adequacy of the monoalveolar structure commonly used in healthy subjects. Indeed, the T shunt impedance is well modeled by a purely compliant element, the mean compliance [0.038 +/- 0.081 (SD) l/kPa], which coincides within 9.5 +/- 6.3% of the alveolar gas compressibility derived from thoracic gas volume (0.036 +/- 0.011 l/kPa). The results obtained provide experimental evidence that the alveolar gas compression is predominantly isothermal and that lung tissue impedance is negligible throughout the whole frequency range. The shape of Zcw is consistent with a low compliance-low inertance pathway in parallel with a high compliance-high inertance pathway. We conclude that the proposed method is able to reliably identify the T network featuring the lung and Zcw.