Published in

American Physiological Society, Journal of Applied Physiology, 5(80), p. 1637-1648

DOI: 10.1152/jappl.1996.80.5.1637

Links

Tools

Export citation

Search in Google Scholar

Assessment of respiratory pressure-volume nonlinearity in rabbits during mechanical ventilation

Journal article published in 1996 by R. Peslin, M. Rotger, R. Farre ORCID, D. Navajas
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The volume dependence of respiratory elastance makes it difficult to recognize actual changes in lung and chest wall elastic properties in artificially ventilated subjects. We have assessed in six anesthetized, tracheotomized, and paralyzed rabbits whether reliable information on the static pressure-volume (PV) curve could be obtained from recordings performed during step variations of the end-expiratory pressure without interrupting mechanical ventilation. Pressure and flow data recorded during 5- and 10-hPa positive-pressure steps were analyzed in the time domain with a nonlinear model featuring a sigmoid PV curve and with a model that, in addition, accounted for tissue viscoelastic properties. The latter fitted the data substantially better. Both models provided reasonably reproducible coefficients, but the PV curves obtained from the 5- and 10-hPa steps were systematically different. When the PV curves were used to predict respiratory effective elastance, the best predictor was the curve derived from the 10-hPa step with the viscoelastic model: unsigned differences averaged 8.6 +/- 11.1, 26.9 +/- 36.4, and 5.5 +/- 5.8% at end-expiratory pressures of 0, 5, and 10 hPa, respectively. This approach provides potentially useful, although not highly accurate, estimates of respiratory effective elastance-volume dependence.