Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 6(273), p. H2899-H2909

DOI: 10.1152/ajpheart.1997.273.6.h2899

Links

Tools

Export citation

Search in Google Scholar

Extracellular serotonin changes in VLM during muscle contraction: effects of 5-HT1A-receptor activation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study determined whether muscle contraction causes an increase in extracellular levels of serotonin (5-HT) in the rostral (rVLM) or caudal ventrolateral medulla (cVLM) in anesthetized rats. Muscle contraction, evoked by tibial nerve stimulation, increased mean arterial blood pressure (MAP) by 27 ± 4 mmHg ( n = 8). In addition, 5-HT levels in the rVLM were elevated by 65 ± 9% during the contraction ( n = 8). Results were similar over two repeated contractions. In contrast, muscle contraction increased MAP, but not 5-HT, levels in the cVLM ( n = 6). Tibial nerve stimulation after muscle paralysis had no effect on either MAP or 5-HT levels in both rVLM and cVLM. Microdialysis of a 5-HT1A agonist, 8-OH-DPAT (10 mM), into the rVLM for 30 min ( n = 6) blunted the MAP change and reduced 5-HT release during contraction. Administration of NAN-190, a 5-HT1A antagonist, into the rVLM had no effect on 5-HT release and cardiovascular responses during muscle contraction and blocked the changes in 5-HT, MAP, and heart rate to static contraction after subsequent microdialysis of 8-OH-DPAT. Results demonstrate that 5-HT levels in the rVLM increase during muscle contraction and that 5-HT1A-receptor activation in the rVLM blunts MAP response to muscle contraction via a decrease in the extracellular concentration of 5-HT.