Published in

Public Library of Science, PLoS ONE, 5(8), p. e63727, 2013

DOI: 10.1371/journal.pone.0063727

Links

Tools

Export citation

Search in Google Scholar

Aberrant Functional Organization within and between Resting-State Networks in AD

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Altered functional characteristics have been reported in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD); nonetheless, comprehensive analyses of the resting-state networks (RSNs) are rare. This study combined multiple imaging modalities to investigate the functional and structural changes within each RSN and between RSNs in aMCI/AD patients. Eight RSNs were identified from functional MRI data from 35 AD, 18 aMCI and 21 normal control subjects using independent component analysis. We compared functional connectivity (FC) within each RSN and found decreased FC in the several cognitive-related RSNs in AD, including the bilateral precuneus of the precuneus network, the posterior cingulate cortex and left precuneus of the posterior default mode network (DMN), and the left superior parietal lobule of the left frontoparietal network (LFP). We further compared the grey matter volumes and amplitudes of low-frequency fluctuations of these regions and found decreases in these measures in AD. Importantly, we found decreased inter-network connectivity between the visual network and the LFP and between the anterior and posterior DMNs in AD. All indices in aMCI patients were numerically between those of controls and AD patients. These results suggest that the brain networks supporting complex cognitive processes are specifically and progressively impaired over the course of AD, and the FC impairments are present not only within networks but also between networks.