American Chemical Society, Journal of Medicinal Chemistry, 16(57), p. 7126-7135, 2014
DOI: 10.1021/jm500984b
Full text: Download
The binding of a series of metal-binding pharmacophores (MBPs) related to the ligand 1-hydroxypyridine-2-(1H)-thione (1,2-HOPTO) in the active site of human carbonic anhydrase II (hCAII) has been investigated. The presence and/or position of a single methyl substituent drastically alters inhibitor potency and can result in coordination modes not observed in small-molecule model complexes. It is shown that this unexpected binding mode is the result of a steric clash between the methyl group and a highly-ordered water network in the active site that is further stabilized by the formation of a hydrogen bond and favorable hydrophobic contacts. The affinity of MBPs is dependent on a large number of factors including donor atom identity, orientation, electrostatics, and van der Waals interactions. These results suggest that metal coordination by metalloenzyme inhibitors is a malleable interaction and that it is thus more appropriate to consider the metal-binding motif of these inhibitors as a pharmacophore, rather than a 'chelator'. The rational design of inhibitors targeting metalloenzymes will benefit greatly from a deeper understanding of the interplay between the variety of forces governing the binding of MBPs to active site metal ions.