Published in

Wiley, British Journal of Pharmacology, 2(130), p. 425-433, 2000

DOI: 10.1038/sj.bjp.0703321

Links

Tools

Export citation

Search in Google Scholar

Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin

Journal article published in 2000 by S. Sbrenna, M. Marti ORCID, M. Morari, G. Calo, G. Calo', R. Guerrini, L. Beani, C. Bianchi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The modulation of [3H]-5-hydroxytryptamine ([3H]-5-HT) efflux from superfused rat cortical synaptosomes by delta, kappa, mu and ORL1 opioid receptor agonists and antagonists was studied.Spontaneous [3H]-5-HT efflux was reduced (20% inhibition) by either 0.5 μM tetrodotoxin or Ca2+-omission. Ten mM K+-evoked [3H]-5-HT overflow was largely Ca2+-dependent (90%) and tetrodotoxin-sensitive (50%).The delta receptor agonist, deltorphin-I, failed to modulate the K+-evoked neurotransmitter efflux up to 0.3 μM. The kappa and the mu receptor agonists, U-50,488 and endomorphin-1, inhibited K+-evoked [3H]-5-HT overflow (EC50=112 and 7 nM, respectively; Emax=28 and 29% inhibition, respectively) in a norBinaltorphimine- (0.3 μM) and naloxone- (1 μM) sensitive manner, respectively. None of these agonists significantly affected spontaneous [3H]-5-HT efflux.The ORL1 receptor agonist nociceptin inhibited both spontaneous (EC50=67 nM) and K+-evoked (EC50=13 nM; Emax=52% inhibition) [3H]-5-HT efflux. The effect of NC was insensitive to naloxone (up to 10 μM), but was antagonized by [Nphe1]nociceptin(1-13)NH2 (a novel selective ORL1 receptor antagonist; pA2=6.7) and by naloxone benzoylhydrazone (pA2=6.3). The ORL1 ligand [Phe1ψ(CH2-NH)Gly2]nociceptin(1-13)NH2 also inhibited K+ stimulated [3H]-5-HT overflow (EC50=64 nM; Emax=31% inhibition), but its effect was partially antagonized by 10 μM naloxone.It is concluded that the ORL1 receptor is the most important presynaptic modulator of neocortical 5-HT release within the opioid receptor family. This suggests that the ORL1/nociceptin system may have a powerful role in the control of cerebral 5-HT-mediated biological functions.