Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 40(102), p. 14302-14307, 2005

DOI: 10.1073/pnas.0506970102

Links

Tools

Export citation

Search in Google Scholar

Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat

Journal article published in 2005 by Buom-Yong Ryu, Hiroshi Kubota ORCID, Mary R. Avarbock, Ralph L. Brinster
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Self-renewal of spermatogonial stem cells (SSCs) is the foundation for maintenance of spermatogenesis throughout life in males and for continuation of a species. The molecular mechanism underlying stem cell self-renewal is a fundamental question in stem cell biology. Recently, we identified growth factors necessary for self-renewal of mouse SSCs and established a serum-free culture system for their proliferation in vitro. To determine whether the stimulatory signals for SSC replication are conserved among different species, we extended the culture system to rat SSCs. Initially, a method to assess in vitro expansion of SSCs was developed by using flow cytometric analysis, and, subsequently, we found that a combination of glial cell line-derived neurotrophic factor, soluble glial cell line-derived neurotrophic factor-family receptor alpha-1 and basic fibroblast growth factor supports proliferation of rat SSCs. When cultured with the three factors, stem cells proliferated continuously for >7 months, and transplantation of the cultured SSCs to recipient rats generated donor stem cell-derived progeny, demonstrating that the cultured stem cells are normal. The growth factor requirement for replication of rat SSCs is identical to that of mouse; therefore, the signaling factors for SSC self-renewal are conserved in these two species. Because SSCs from many mammals, including human, can replicate in mouse seminiferous tubules after transplantation, the growth factors required for SSC self-renewal may be conserved among many different species. Furthermore, development of a long-term culture system for rat SSCs has established a foundation for germ-line modification of the rat by gene targeting technology.