Published in

De Gruyter Open, Nanophotonics, 2(7), p. 371-391, 2017

DOI: 10.1515/nanoph-2017-0060

Links

Tools

Export citation

Search in Google Scholar

Nanostructures induced light harvesting enhancement in organic photovoltaics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLightweight and low-cost organic photovoltaics (OPVs) hold great promise as renewable energy sources. The most critical challenge in developing high-performance OPVs is the incomplete photon absorption due to the low diffusion length of the carrier in organic semiconductors. To date, various attempts have been carried out to improve light absorption in thin photoactive layer based on optical engineering strategies. Nanostructure-induced light harvesting in OPVs offers an attractive solution to realize high-performance OPVs, via the effects of antireflection, plasmonic scattering, surface plasmon polarization, localized surface plasmon resonance and optical cavity. In this review article, we summarize recent advances in nanostructure-induced light harvesting in OPVs and discuss various light-trapping strategies by incorporating nanostructures in OPVs and the fabrication processing of the micro-patterns with high resolution, large area, high yield and low cost.