Published in

American Diabetes Association, Diabetes, 2(67), p. 278-290, 2017

DOI: 10.2337/db16-1356

Links

Tools

Export citation

Search in Google Scholar

Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca2+ channel function and Ca2+ fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca2+ and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.