Published in

Elsevier, Materials Science in Semiconductor Processing, 4-5(9), p. 477-483

DOI: 10.1016/j.mssp.2006.08.042

Links

Tools

Export citation

Search in Google Scholar

Ab initio modeling of defect levels in Ge clusters and supercells

Journal article published in 2006 by J. Coutinho ORCID, V. J. B. Torres, A. Carvalho, R. Jones, Sven Öberg, P. R. Briddon
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Most density-functional studies of defects in semiconductors invariably use (i) a supercell that imitates the host crystal, as well as (ii) a local treatment of the exchange-correlation potential. The first approximation has had an enormous success in many materials, provided that the size of cell is large enough to minimize long-range interactions between the infinite lattice of defects. For instance, these may arise from strain fields or from the overlap between shallow defect states. The second approximation, when combined with the periodic boundary conditions, leads to an essentially metallic density of states in Ge, which can compromise any investigation of electronic transitions involving gap levels. Here, we report on two approaches to surmount these difficulties, namely (i) to open the gap by reducing the host to a Ge cluster of atoms whose states are confined by a surface potential and (ii) to use supercells, but choosing carefully the Brillouin zone sampling scheme, taking k-points that minimize the admixture between defect-related gap states and the host density of states. These methods are utilized in the calculation of the electronic structure of the vacancy, divacancy, and vacancy-donor pairs in Ge