Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 6(73), p. 1172-1178, 2017

DOI: 10.1107/s2052520617015591

Links

Tools

Export citation

Search in Google Scholar

Phase transition and proton ordering at 50 K in 3-(pyridin-4-yl)pentane-2,4-dione

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Single-crystal neutron diffraction experiments at 100 and 2.5 K have been performed to determine the structure of 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) with respect to its protonation pattern and to monitor a low-temperature phase transition. Solid HacacPy exists as the enol tautomer with a short intramolecular hydrogen bond. At 100 K, its donor···acceptor distance is 2.450 (8) Å and the compound adopts space group C2/c, with the N and para-C atoms of the pyridyl ring and the central C of the acetylacetone substituent on the twofold crystallographic axis. As a consequence of the axial symmetry, the bridging hydrogen is disordered over two symmetrically equivalent positions, and the carbon–oxygen bond distances adopt intermediate values between single and double bonds. Upon cooling, a structural phase transition to the t 2 subgroup P\bar 1 occurs; the resulting twins show an ordered acetylacetone moiety. The phase transition is fully reversible but associated with an appreciable hysteresis in the large single crystal under study: transition to the low-temperature phase requires several hours at 2.5 K and heating to 80 K is required to revert the transformation. No significant hysteresis is observed in a powder sample, in agreement with the second-order nature of the phase transition.