Published in

American Meteorological Society, Journal of Applied Meteorology and Climatology, 2(57), p. 295-317, 2018

DOI: 10.1175/jamc-d-16-0341.1

Links

Tools

Export citation

Search in Google Scholar

Effects of City Size on Thunderstorm Evolution Revealed through a Multiradar Climatology of the Central United States

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractFive years of 0.01° latitude × 0.01° longitude multiradar multisensor grids of composite reflectivity and vertically integrated signals from the maximum expected size of hail (MESH) and vertically integrated liquid (VIL) were created to examine the role of city size on thunderstorm occurrence and strength around four cities: Dallas–Fort Worth, Texas; Minneapolis–St. Paul, Minnesota; Oklahoma City, Oklahoma; and Omaha, Nebraska. A storm-tracking algorithm identified thunderstorm areas every minute and connected them together to form tracks. These tracks defined the upwind and downwind regions around each city on a storm-by-storm basis and were analyzed in two ways: 1) by sampling the maximum value every 10 min and 2) by accumulating the spatial footprint over its lifetime. Beyond examining all events, a subset of events corresponding to favorable conditions for urban modification was explored. This urban favorable (UF) subset consisted of nonsupercells occurring in the late afternoon/evening in the meteorological summer on weak synoptically forced days. When examining all thunderstorm events, regions at variable ranges upwind of all four cities generally had higher areal mean values of reflectivity, MESH, and VIL relative to downwind areas. In the UF subset, the larger cities (Dallas–Fort Worth and Minneapolis–St. Paul) had a 24%–50% increase in the number of downwind thunderstorms, resulting in a higher areal mean reflectivity, MESH, and VIL in this region. The smaller cities (Oklahoma City and Omaha) did not show such a downwind enhancement in thunderstorm occurrence and strength for the radar variables examined. This pattern suggests that larger cities could increase thunderstorm occurrence and intensity downwind of the prevailing flow under unique environmental conditions.