Published in

American Society for Microbiology, Infection and Immunity, 7(80), p. 2558-2569, 2012

DOI: 10.1128/iai.06230-11

American Society for Microbiology, Infection and Immunity, 11(81), p. 4324-4324, 2013

DOI: 10.1128/iai.00989-13

Links

Tools

Export citation

Search in Google Scholar

NOD2 Signaling Contributes to Host Defense in the Lungs against Escherichia coli Infection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Bacterial pneumonia remains a significant cause of mortality in the United States. The innate immune response is the first line of defense against invading bacteria. Neutrophil recruitment to the lungs is the first step in a multistep sequence leading to bacterial clearance. Ligand interaction with pattern-recognizing receptors (PRRs) leads to chemokine production, which drives neutrophils to the site of infection. Although we demonstrated that RIP2 is important for host defense in the lungs against Escherichia coli , the individual roles of NOD1 and NOD2 in pulmonary defense have not been addressed. Here, we explored the role of NOD2 in neutrophil-mediated host defense against an extracellular pathogen, E. coli . We found enhanced bacterial burden and reduced neutrophil and cytokine/chemokine levels in the lungs of NOD2 −/− mice following E. coli infection. Furthermore, we observed reduced activation of NF-κB and mitogen-activated protein kinases (MAPKs) in the lungs of NOD2 −/− mice upon E. coli challenge. Moreover, NOD2 −/− neutrophils show impaired intracellular bacterial killing. Using NOD2/RIP2 −/− mice, we observed bacterial burden and neutrophil accumulation in the lungs similar to those seen with NOD2 −/− mice. In addition, bone marrow-derived macrophages obtained from NOD2/RIP2 −/− mice demonstrate a reduction in activation of NF-κB and MAPKs similar to that seen with NOD2 −/− mice in response to E. coli . These findings unveil a previously unrecognized role of the NOD2-RIP2 axis for host defense against extracellular Gram-negative bacteria. This pathway may represent a novel target for the treatment of lung infection/inflammation.