Published in

MDPI, Energies, 7(12), p. 1319, 2019

DOI: 10.3390/en12071319

Links

Tools

Export citation

Search in Google Scholar

A 3D Thermal Network Model for Monitoring Imbalanced Thermal Distribution of Press-Pack IGBT Modules in MMC-HVDC Applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, the impact of a double-sided press-pack insulated-gate-bipolar-transistor (PP IGBT) cooling structure on its thermal impedance distribution is studied and explored. A matrix thermal impedance network model is built by considering the multi-chip thermal coupling effect for the collector side of the PP IGBT. Moreover, a verification has been made by comparing the proposed matrix thermal network model and the conventional lumped RC network model provided by the manufacturer. It is concluded that the collector side has lower thermal resistance and dissipates about 88% of the heat generated by the IGBT chips inside the module. Then, a modular-multilevel-converter high-voltage-direct-current (MMC-HVDC)-based type test setup composed of the press-pack IGBT stacks is established and the junction temperature is calculated with the proposed thermal model and verified by temperature measurements.