Published in

Elsevier, International Journal of Biological Macromolecules, (65), p. 136-147, 2014

DOI: 10.1016/j.ijbiomac.2014.01.012

Links

Tools

Export citation

Search in Google Scholar

The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices

Journal article published in 2014 by Mohammad A. Chowdhury
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This article presents the perspectives on the lignin-based controlled release (CR) of bioactive materials which are based on the researches that took place over the last three decades. It encompasses three broad spectra of observations: CR formulations with mixed-matrix of lignin; CR formulations with modified lignin; and the lignin-based CR formulation modelling. The article covers a range of bioactive materials aimed for agricultural utilisations viz. herbicides, pesticides, insecticides and fertilisers for their controlled release studies, which were formulated either with lignin or lignin-based biopolymers. The inherent complexities, structural heterogeneities, and the presence of myriad range of functionalities in the lignin structure make it difficult to understand and explaining the underlying CR behaviour and process. In conjunction to this issue, the fundamental aspects of the synthetic and biocompatible polymer-based drug controlled release process are presented, and correlated with the lignin-based CR research. The articulation of this correlation and the overview presented in this article may be complemented of the future lignin-based CR research gaining better insights, reflections, and understanding. A recommended approach on the lignin depolymerisation is suggested to fragmenting the lignin, which may be tailored further using the re-polymerisation or other synthetic approaches. Thus it may allow more control with flexibilities and improved properties of the modified lignin materials, and help achieve the desired CR outcomes.