Published in

American Institute of Physics, Review of Scientific Instruments, 9(88), p. 095102

DOI: 10.1063/1.4989634

Links

Tools

Export citation

Search in Google Scholar

Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at time scales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.