Dissemin is shutting down on January 1st, 2025

Published in

Trans Tech Publications, Key Engineering Materials, (754), p. 218-221

DOI: 10.4028/www.scientific.net/kem.754.218

Links

Tools

Export citation

Search in Google Scholar

Numerical Computation of Stress Intensity Factors in Ultrasonic Very-High-Cycle Fatigue Tests

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The correct computation of the Stress Intensity Factor (SIF) in ultrasonic Very-High-Cycle Fatigue (VHCF) loading conditions is a key issue when investigating the crack growth rate curve with pre-cracked specimens or when evaluating critical SIF values from fracture surfaces of failed specimens. Dynamic conditions related to the resonance of the vibrating specimen, contact nonlinearity between crack faces and stress singularity at the crack tip make the SIF computation difficult and cumbersome. Generally, numerical computation through Finite Element Models (FEMs) under non-linear dynamic conditions makes use of direct integration methods (implicit or explicit). However, in the high frequency regime of ultrasonic VHCF tests, the procedure may lead to an unacceptable computational time. In order to reduce the computational time, a hybrid procedure based on the Harmonic Balance Method (HBM) and on the Virtual Crack Closure Technique (VCCT) is originally presented and applied in this paper. The dynamic field parameters calculated with the HBM are used as input data for the computation of the SIF through the VCCT.