American Institute of Physics, Applied Physics Letters, 3(111), p. 031103
DOI: 10.1063/1.4986498
Full text: Unavailable
Traditional manipulation of light generally employs diffractive optical elements such as binary phase or amplitude masks. However, we have found that vector Bessel-Gaussian (BG) beams have the intrinsic capacity of forming a special intensity pattern without additional optical elements. Using the vector diffraction theory, we theoretically show that several optical patterns (e.g., hollow beam, bottle beam, optical needle, and spot) can be created only by dynamically tailoring vector BG beams through their beam parameters (viz., polarization order n, transverse wave number β, and beam waist w0). These results yield a useful guideline for the adjustable beam parameter to generate a certain optical pattern in the focal region. The proposed roadmap of manipulating the structured beams by their intrinsic properties might open an alternative avenue for beam shaping.