Published in

American Society for Horticultural Science, Journal of the American Society for Horticultural Science, 5(141), p. 449-456, 2016

DOI: 10.21273/jashs03755-16

Links

Tools

Export citation

Search in Google Scholar

Responses of Tolerant and Susceptible Kentucky Bluegrass Germplasm to Salt Stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Much of semiarid western North America is salt affected, and using turfgrasses in salty areas can be challenging. Kentucky bluegrass (Poa pratensis L.) is relatively susceptible to salt stress, showing reduced growth, osmotic and ionic stress, and eventual death at moderate or high salt concentrations. Considerable variation exists for salt tolerance among kentucky bluegrass germplasm, but gaining consistency among studies and entries has been a challenge. In this study, two novel kentucky bluegrass accessions recently reported as salt tolerant (PI 371768 and PI 440603) and two cultivars commonly used as references (Baron and Midnight) were compared for their turf quality (TQ), stomatal conductance (gS), leaf water potential (ψLEAF), electrolyte leakage (EL), and accumulation of inorganic ions under salt stress. TQ, ψLEAF, and EL were highly correlated with each other while only moderately correlated with gS. The tolerant accessions showed higher ψLEAF and lower EL than the cultivars Midnight and Baron at increasing salt concentrations and over 28 days of treatment. The accumulation of sodium (Na) and calcium (Ca) in the leaves was highly correlated and did not vary significantly among the four entries. Genes involved in ion transport across membranes, and in antioxidant activities, were significantly induced on salt stress in the tolerant accessions relative to the susceptible. These data indicate the ability of tolerant accessions to ameliorate oxidative stress and prevent EL, and confirmed the tolerance of germplasm previously reported on while indicating mechanisms by which they tolerate the salt stress.