Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Review of Scientific Instruments, 9(87), p. 094701

DOI: 10.1063/1.4962242

Links

Tools

Export citation

Search in Google Scholar

Quantitative analysis of effective height of probes in microwave impedance microscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A quantitative approach is used to determine an effective height of probe beyond which the capacitance contribution is not significant in microwave impedance microscopy (MIM). We compare the effective height for three different modes of measurement, i.e., capacitance C(l) (l is the tip-sample distance), derivative of capacitance (C′(l)), and second derivative of capacitance (C″(l)). We discuss the effects of tip geometry and sample properties such as relative permittivity and sample height on the effective height with examples and analyze the implication on the spatial resolution of MIM. Finally, our results are verified by microwave impedance microscopy (MIM) measurement.