Published in

American Association for Cancer Research, Cancer Research, 14_Supplement(76), p. 4398-4398, 2016

DOI: 10.1158/1538-7445.am2016-4398

Links

Tools

Export citation

Search in Google Scholar

Abstract 4398: Impact of Interleukin-22 on K-ras mutant lung tumor microenvironment and stemness properties

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Oncogenic K-ras mutations found in ∼ 30% of all non-small cell lung cancers are associated with chemoresistance and poor prognosis. Using a K-ras induced lung cancer mouse model, CC-LR, we previously showed that K-ras mutant lung tumors have intrinsic inflammatory characteristics with activation of NF-kB pathway, release of inflammatory cytokines IL-6, and activation of the IL-6 responsive transcription factor STAT3. We have further shown that IL-6/STAT3 pathway, and IL-17 producing CD4 helper T cells (Th17 cells) through their main cytokine, IL-17A, play critical roles in promotion of lung cancer in this model. IL-22 is another effecter molecule secreted by Th17 cells which is highly expressed in our K-ras mutant mouse model. IL-22 is a unique cytokine, which seems to act exclusively on nonhematopoietic cells, with basal IL-22R expression in the epithelial cells and fibroblast, and mostly signals through STAT3 pathway. Here we found that genetic ablation of IL-22 in CC-LR mice (CC-LR/IL22-KO mice), causes significant reduction in lung surface tumor numbers by ∼54% (2.1-fold). Histopathological analysis of lung sections confirmed a reduction in number and size of tumors in CC-LR/IL22-KO mice, which was associated with significantly lower tumor cell proliferation, angiogenesis and STAT3 activation. IL-22 ablation also reduced the numbers of inflammatory cells in bronchoalveolar lavage fluid, and decreased the expression of pro-tumor inflammatory cytokines such as IL-6, IL-17 and TNFα. This was associated with increased expression of anti-tumor Th1 cells -specific transcription factor (Tbet) and their activation markers, IFNγ, and GZB, and decreased expression of pro-tumor Th17- (RORγ) and T regulatory (FOXP3+) specific transcription factors. Recent studies have shown an association between IL-22 and stem-cell like properties in colon cancer. In lung cancer, cell populations expressing NANOG, SOX2, Oct4 and/or aldehyde dehydrogenase activity are enriched with stemness properties. Interestingly, in CC-LR/IL22-KO mice we found significant reduction in expression of these stemness genes. Thus, we conclude that IL-22 promotes K-ras mutant lung tumorigenesis by inducing a pro-tumor inflammatory microenvironment with proliferative and angiogenic properties as well as protecting stemness characteristic in epithelial/tumor cells. Therefore, we propose pharmacological targeting of IL-22 as a potential therapeutic strategy in combination with conventional cytotoxic therapy, immune check point blockade, or other targeted therapies (e.g. MEK inhibition) for lung cancer patients with K-ras mutation. Citation Format: Nasim Khosravi, Amber M. Cumpian, Soudabeh Daliri, Cynthia De La Garza, Mauricio S. Caetano, Seyed Javad Moghaddam. Impact of Interleukin-22 on K-ras mutant lung tumor microenvironment and stemness properties. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4398.