Published in

De Gruyter, Zeitschrift für Kristallographie - Crystalline Materials, 1-3(232), p. 3-14, 2016

DOI: 10.1515/zkri-2016-1961

Links

Tools

Export citation

Search in Google Scholar

Synthesis and characterization of metastable transition metal oxides and oxide nitrides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract New routes to vanadium sesquioxide and tantalum oxide nitride (γ- and δ-phase) are presented. Phase pure V2O3 with bixbyite-type structure, a metastable polymorph, was obtained from vanadium fluoride hydrates at ~750 K. It crystallizes in the cubic crystal system in space group I a 3 ¯ $Ia\bar 3$ with lattice parameter a=939.30(5) pm. The catalytical properties of the corresponding oxide nitride phases and their oxidation and reduction solid-state kinetics were investigated. The preparation of γ-TaON as a phase pure sample can be realized by ammonolysis of X-ray amorphous tantalum oxide precursors at 1073 K. This metastable tantalum oxide nitride crystallizes in the monoclinic VO2(B)-type structure in space group C2/m. The same precursors can be used to synthesize the δ-modification with an anatase-type structure at 1023 K. It crystallizes in the tetragonal crystal system in space group I41/amd. A maximum yield of 82 m % could be obtained. The fundamental band gaps of the synthesized and of other metastable TaON polymorphs were calculated from first principles using the GW method. The present results are compared to experimental data and to previous calculations at hybrid DFT level.