Published in

Cambridge University Press, Journal of Fluid Mechanics, (840), p. 498-529

DOI: 10.1017/jfm.2018.18

Links

Tools

Export citation

Search in Google Scholar

Parametric instability and wave turbulence driven by tidal excitation of internal waves

Journal article published in 2018 by Thomas Le Reun ORCID, Benjamin Favier ORCID, Michael Le Bars, Michael Le Bars
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows us to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient in simulating planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via direct numerical simulations (DNSs) are in very good agreement with Wentzel–Kramers–Brillouin analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt–Väisälä frequencies is increased, the frequency spectrum of this wave turbulence displays a $-2$ power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Geophys. Fluid Dyn., vol. 3 (1), 1972, pp. 225–264) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.