Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-06215-x

Links

Tools

Export citation

Search in Google Scholar

Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays

Journal article published in 2017 by Yuanbo Deng, Daping Chu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCoherence properties of different light sources and how they affect the image quality of holographic display are investigated. Temporal coherence is related to the intrinsic spectrum bandwidth of the light source, while spatial coherence can be affected by the size of the light source and propagation distance in use. These two coherence properties are measured for various light sources of diode-pumped solid-state (DPSS) laser, laser diode (LD), light emitting diode (LED), super luminescent light emitting diode (sLED) and micro light emitting diode (mLED) in different settings, together with the quality of the holographic reconstructed images. Although the image sharpness and speckle are related to both coherence parameters, our results and subsequent analysis show that the spatial coherence can be linked directly to the image sharpness and the temporal coherence to the speckle. This will provide a quantitative way not only to optimize the image quality between uniformity and sharpness but also to determine the safety power level for different light sources when viewing the produced images by human eyes directly.