National Academy of Sciences, Proceedings of the National Academy of Sciences, 9(114), p. 2379-2382, 2017
Full text: Download
Significance The hypothalamo–pituitary axis controls a wide range of homeostatic processes, including growth, stress, and reproduction. Despite this fact, the hypothalamic neuron firing patterns that lead to slowly evolving pituitary hormone rhythms remain enigmatic. Here, we used in vivo amperometric recordings in freely behaving mice to investigate how tuberoinfundibular neurons release dopamine (DA) at the median eminence (ME) to control pituitary prolactin secretion. Using this approach, we show that DA release occurs as multiple locally generated and time-scaled secretory events, which are integrated over a range of minutes across the ME. These results provide a broad physiological mechanism for the dialogue that occurs between the brain and pituitary to dictate hormone rhythms over multiple timescales, from ultradian to seasonal.