Published in

Oxford University Press, Nucleic Acids Research, W1(45), p. W236-W240, 2017

DOI: 10.1093/nar/gkx412

Links

Tools

Export citation

Search in Google Scholar

SODA: prediction of protein solubility from disorder and aggregation propensity

Journal article published in 2017 by Lisanna Paladin, Damiano Piovesan ORCID, Silvio C. E. Tosatto ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Solubility is an important, albeit not well understood, feature determining protein behavior. It is of paramount importance in protein engineering, where similar folded proteins may behave in very different ways in solution. Here we present SODA, a novel method to predict the changes of protein solubility based on several physico-chemical properties of the protein. SODA uses the propensity of the protein sequence to aggregate as well as intrinsic disorder, plus hydrophobicity and secondary structure preferences to estimate changes in solubility. It has been trained and benchmarked on two different datasets. The comparison to other recently published methods shows that SODA has state-of-the-art performance and is particularly well suited to predict mutations decreasing solubility. The method is fast, returning results for single mutations in seconds. A usage example estimating the full repertoire of mutations for a human germline antibody highlights several solubility hotspots on the surface. The web server, complete with RESTful interface and extensive help, can be accessed from URL: http://protein.bio.unipd.it/soda.