Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter Open, Nukleonika, 3(61), p. 239-244, 2016

DOI: 10.1515/nuka-2016-0040

Links

Tools

Export citation

Search in Google Scholar

The influence of air conditioning changes on the effective dose due to radon and its short-lived decay products

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Most people spend the majority of their time in indoor environments where the level of harmful pollutants is often significantly higher than outdoors. Radon (222Rn) and its decay products are the example of radioactive pollutants. These radioisotopes are the main source of ionizing radiation in non-industrial buildings. The aim of the study was to determine the impact of air-conditioning system on radon and its progeny concentrations and thus on the effective dose. The measurements were carried out in the auditorium at the Environmental Engineering Faculty (Lublin University of Technology, Poland). Measurements of radon and its progeny (in attached and unattached fractions) as well as measurements of the following indoor air parameters were performed in two air-conditioning (AC) operation modes: AC ON and AC ON/OFF. The air supply rate and air recirculation were taken into consideration. The separation of radon progeny into attached and unattached fractions allowed for determining, respectively, the dose conversion factor (DCF) and the inhalation dose for teachers and students in the auditorium. A considerable increase of the mean radon progeny concentrations from 1.2 Bq/m3 to 5.0 Bq/m3 was observed in the AC ON/OFF mode compared to the AC ON mode. This also resulted in the increase of the inhalation dose from 0.005 mSv/y to 0.016 mSv/y (for 200 h/year). Furthermore, the change of the air recirculation rate from 0% to 80% resulted in a decrease of the mean radon concentration from 30 Bq/m3 to 12 Bq/m3 and the reduction of the mean radon progeny concentration from 1.4 Bq/m3 to 0.8 Bq/m3. This resulted in the reduction of the inhalation dose from 0.006 mSv/y to 0.003 mSv/y.