Published in

Applications of Topological Methods in Molecular Chemistry, p. 131-150

DOI: 10.1007/978-3-319-29022-5_6

Links

Tools

Export citation

Search in Google Scholar

Emergent Scalar and Vector Fields in Quantum Chemical Topology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Several potentially useful scalar and vector fields that have been scarcely or even never used to date in Quantum Chemical Topology are defined, computed, and analyzed for a few small molecules. The fields include the Ehrenfest force derived from the second order density matrix, which does not show many of the spurious features encountered when it is computed from the electronic stress tensor, the exchange-correlation (xc) potential, the potential acting on one electron in a molecule, and the additive and effective energy densities. The basic features of the topology of some of these fields are also explored and discussed, paying attention to their possible future interest.