Published in

American Society of Mechanical Engineers, Journal of Energy Resources Technology, 4(140), 2017

DOI: 10.1115/1.4038406

Links

Tools

Export citation

Search in Google Scholar

Torrefaction and co-combustion of healthy and beetle kill pine with coal

Journal article published in 2017 by Alexandra Howell, Emily Beagle, Erica Belmont
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combustion of biomass and co-combustion with fossil fuels are viable means of reducing emissions in electricity generation, and local biomass resources are appealing to minimize life cycle emissions. In the Rocky Mountain Region of the U.S., a bark beetle epidemic is causing widespread forest death and associated safety hazards. This biomass has potential to be a feedstock resource, thereby achieving dual goals of improving forest health while supplying biomass for uses such as co-firing with coal in power plants. In this study, combustion and co-combustion of healthy pine (HP) and beetle kill pine (BK) with coal were conducted to assess the interchangeability of these feedstocks in raw and torrefied forms. HP and BK pine were torrefied at 200, 250, and 300 °C to increase energy density and improve grindability, both of which aid in seamless integration into power plants. Grindability was assessed for both feedstocks at each torrefaction condition. The raw feedstocks were pyrolyzed to assess their relative compositions. Raw and torrefied feedstocks were then combusted alone and co-combusted with sub-bituminous Powder River Basin coal using thermogravimetric analysis (TGA). Modulated TGA was used to derive kinetic parameters of coal, raw and torrefied biomass, and coal-biomass blends. Results show increased grindability and pyrolysis mass loss of BK as compared to HP, which are attributed to the degraded state of the wood. Combustion and co-combustion show favorable interchangeability of the HP and BK, and additive behavior when co-combusted with coal.