Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Automatisierungstechnik, 7(64), p. 555-566, 2016

DOI: 10.1515/auto-2016-0019

Links

Tools

Export citation

Search in Google Scholar

Automation strategies for large-scale 3D image analysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract New imaging techniques enable visualizing and analyzing a multitude of unknown phenomena in many areas of science at high spatio-temporal resolution. The rapidly growing amount of image data, however, can hardly be analyzed manually and, thus, future research has to focus on automated image analysis methods that allow one to reliably extract the desired information from large-scale multidimensional image data. Starting with infrastructural challenges, we present new software tools, validation benchmarks and processing strategies that help coping with large-scale image data. The presented methods are illustrated on typical problems observed in developmental biology that can be answered, e.g., by using time-resolved 3D microscopy images.