Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-02486-6

Links

Tools

Export citation

Search in Google Scholar

Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests

Journal article published in 2017 by Jing Zhang, Xuli Tang, Siyuan Zhong, Guangcai Yin, Yifei Gao, Xinhua He ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGlomalin-related soil protein (GRSP) is known as an important microbial by-product which is crucial for preserving or accumulating soil organic carbon (SOC). However, the underlying mechanisms are not well understood. In this study, we investigated the chemical structures of GRSP and its relationship with SOC using 13C nuclear magnetic resonance (NMR) in three tropical forests. The three forests, including a planted forest (PF), a secondary forest (MF) and a primary forest (BF), were selected to represent the natural successional process after disturbance in southern China. Results showed that the average concentrations of GRSP were (3.94 ± 1.09) mg cm−3 and accounting for (3.38 ± 1.15)% of the SOC in the top 10 cm soil. NMR analysis indicated rich aromatic C (~30%) and carboxyl C (~40%) in GRSP, and abundant alkyl C (~30%) and O-alkyl C (~50%) in SOC. The recalcitrance indexes (RI), as defined as the ratio of sum of alkyl C and aromatic C over sum of O-alkyl C and carboxyl C, was (98.6 ± 18.9)%, (145.5 ± 10.9)% and (20.7 ± 0.3)% in GRSP higher than that in SOC in the PF, MF and BF, respectively. This study demonstrated that the stubborn structure of GRSP probably regulate the resistance of SOC sequestration in tropical forests, especially in the planted and secondary forests.