Published in

Future Medicine, Nanomedicine, 8(12), p. 831-844, 2017

DOI: 10.2217/nnm-2016-0364

Links

Tools

Export citation

Search in Google Scholar

Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant Mycobacterium tuberculosis infections

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: First extensive reformulation of clofazimine (CLZ) in nanoporous silica particles (NSPs) for tackling antibiotic-resistant tuberculosis (TB) infections. Materials & methods: Solid-state characterization of several CLZ-encapsulated NSP formulations was followed by in vitro drug solubility, Caco-2 intestinal cells drug permeability and TB antibacterial activity. Results: NSPs stabilize the amorphous state of CLZ (shelf stability >6 months) and dramatically increase the drug solubility in simulated gastric fluid (up to 20-fold) with different dissolution kinetics depending on the NSPs used. CLZ encapsulation in NSP substantially enhances the permeation through model intestinal cell layer, achieving effective antimicrobial concentrations in TB-infected macrophages. Conclusion: Promising results toward refurbishment of an approved marketed drug for a different indication suitable for oral anti-TB formulation.