Published in

Elsevier, Construction and Building Materials, (139), p. 531-539

DOI: 10.1016/j.conbuildmat.2016.11.020

Links

Tools

Export citation

Search in Google Scholar

Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present paper, the performance of an innovative thermal insulation rigid board is evaluated in terms of fire behaviour and fungal resistance. The board is based on vegetal pith and a natural gum (corn pith and sodium alginate) and it is completely compostable. This new composite was developed in previous work. Here boric acid, aluminium hydroxide and ammonium polyphosphate are used as fire retardants and montan wax, acetic acid and lactic acid are used as water repellent and fungicides respectively. Interactions between these different treatments is investigated. Both flaming and smouldering combustion processes of the different formulations are evaluated by small-scale techniques which include pyrolysis microcalorimetry and thermogravimetric analysis. A medium-scale device is also designed in order to study the impact of the different additives to the smouldering kinetics. Fire behaviour tests show that good improvement is obtained, both in flaming and smouldering combustion when boric acid is added. Although smouldering is not avoided in any case, the addition of 8% of boric acid or aluminium hydroxide slows down the speed of combustion propagation. The effect of the different additives on the moisture content and mould growth at 97% RH and 27 °C is analysed. Under such severe conditions none of the additives is able to prevent mould growth, with the exception of boric acid. None or marginal mould growth was observed on samples containing 8% of boric acid although moisture content was higher than the other cases. ; Peer Reviewed ; Preprint