Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Access, (5), p. 4900-4912, 2017

DOI: 10.1109/access.2017.2677950

Links

Tools

Export citation

Search in Google Scholar

Case-based reasoning for product style construction and fuzzy analytic hierarchy process evaluation modeling using consumers linguistic variables

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Key form features are relative to the style of a product and the expression style features depict the product description and are a measurement of attribute knowledge. The uncertainty definition leads to an improved and effective product style retrieval when combined with fuzzy sets. Firstly, a style knowledge and features database are constructed using fuzzy case based reasoning technology (FCBR). A similarity measurement method based on case-based reasoning and fuzzy model of the fuzzy proximity method may be defined by the Fuzzy Nearest-Neighbor (FNN) algorithm obtaining the style knowledge extraction. Secondly, the Linguistic Variables (LV) are used to assess the product characteristics to establish the product style evaluation database for simplifying the style presentation and decreasing the computational complexity. Thirdly, the model of product style feature set, extracted by FAHP and the final style related form features set, are acquired using LV. This research involves a case study for extracting the key form features of the style of high heel shoes. The proposed algorithms are generated by calculating the weights of each component of high heel shoes using FAHP with LV. The case study and results established that the proposed method is feasible and effective for extracting the style of the product.