Links

Tools

Export citation

Search in Google Scholar

Visual Vehicle Tracking Based on Deep Representation and Semisupervised Learning

Journal article published in 2017 by Yingfeng Cai, Hai Wang ORCID, Xiao-Qiang Sun, Long Chen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Discriminative tracking methods use binary classification to discriminate between the foreground and background and have achieved some useful results. However, the use of labeled training samples is insufficient for them to achieve accurate tracking. Hence, discriminative classifiers must use their own classification results to update themselves, which may lead to feedback-induced tracking drift. To overcome these problems, we propose a semisupervised tracking algorithm that uses deep representation and transfer learning. Firstly, a 2D multilayer deep belief network is trained with a large amount of unlabeled samples. The nonlinear mapping point at the top of this network is subtracted as the feature dictionary. Then, this feature dictionary is utilized to transfer train and update a deep tracker. The positive samples for training are the tracked vehicles, and the negative samples are the background images. Finally, a particle filter is used to estimate vehicle position. We demonstrate experimentally that our proposed vehicle tracking algorithm can effectively restrain drift while also maintaining the adaption of vehicle appearance. Compared with similar algorithms, our method achieves a better tracking success rate and fewer average central-pixel errors.