Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep43167

Links

Tools

Export citation

Search in Google Scholar

Robust High-dimensional Bioinformatics Data Streams Mining by ODR-ioVFDT

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOutlier detection in bioinformatics data streaming mining has received significant attention by research communities in recent years. The problems of how to distinguish noise from an exception and deciding whether to discard it or to devise an extra decision path for accommodating it are causing dilemma. In this paper, we propose a novel algorithm called ODR with incrementally Optimized Very Fast Decision Tree (ODR-ioVFDT) for taking care of outliers in the progress of continuous data learning. By using an adaptive interquartile-range based identification method, a tolerance threshold is set. It is then used to judge if a data of exceptional value should be included for training or otherwise. This is different from the traditional outlier detection/removal approaches which are two separate steps in processing through the data. The proposed algorithm is tested using datasets of five bioinformatics scenarios and comparing the performance of our model and other ones without ODR. The results show that ODR-ioVFDT has better performance in classification accuracy, kappa statistics, and time consumption. The ODR-ioVFDT applied onto bioinformatics streaming data processing for detecting and quantifying the information of life phenomena, states, characters, variables and components of the organism can help to diagnose and treat disease more effectively.