Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 35(113), p. 9882-9887, 2016

DOI: 10.1073/pnas.1603941113

Links

Tools

Export citation

Search in Google Scholar

Comparative genomics of biotechnologically important yeasts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance The highly diverse Ascomycete yeasts have enormous biotechnological potential. Collectively, these yeasts convert a broad range of substrates into useful compounds, such as ethanol, lipids, and vitamins, and can grow in extremes of temperature, salinity, and pH. We compared 29 yeast genomes with the goal of correlating genetics to useful traits. In one rare species, we discovered a genetic code that translates CUG codons to alanine rather than canonical leucine. Genome comparison enabled correlation of genes to useful metabolic properties and showed the synteny of the mating-type locus to be conserved over a billion years of evolution. Our study provides a roadmap for future biotechnological exploitations.