Published in

American Chemical Society, Environmental Science and Technology, 23(50), p. 12722-12731, 2016

DOI: 10.1021/acs.est.6b03504

Links

Tools

Export citation

Search in Google Scholar

Which Molecular Features Affect the Intrinsic Hepatic Clearance Rate of Ionizable Organic Chemicals in Fish?

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study, we measured in vitro hepatic clearance rates for 50 IOCs using a pooled batch of liver S9 fractions isolated from rainbow trout (Oncorhynchus mykiss). The IOCs included four types of strongly ionized acids (carboxylates, phenolates, sulfonates, and sulfates), three types of strongly ionized bases (primary, secondary, tertiary amines), and a pair of quaternary ammonium compounds (QACs). Included in this test set were several surfactants and a series of beta-blockers. For linear alkyl chain IOC analogues, biotransformation enzymes appeared to act directly on the charged terminal group, with the highest clearance rates for tertiary amines and sulfates and no clearance of QACs. Clearance rates for C12-IOCs were higher than those for C8-IOC analogues. Several analogue series with multiple alkyl chains, branched alkyl chains, aromatic rings, and nonaromatic rings were evaluated. The likelihood of multiple reaction pathways made it difficult to relate all differences in clearance to specific molecular features the tested IOCs. Future analysis of primary metabolites in the S9 assay is recommended to further elucidate biotransformation pathways for IOCs in fish.