Published in

American Geophysical Union, Geophysical Research Letters

DOI: 10.1002/2016gl072314

Links

Tools

Export citation

Search in Google Scholar

Particulate phases are key in controlling dissolved iron concentrations in the (sub)tropical North Atlantic: Particulate Phases Control dFe

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.