Published in

American Chemical Society, Journal of Physical Chemistry C, 7(121), p. 3854-3861, 2017

DOI: 10.1021/acs.jpcc.6b10932

Links

Tools

Export citation

Search in Google Scholar

Influence of Sb on the structure and performance of Pd-based catalysts: An X-ray spectroscopic study

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combined X-ray photoelectron and absorption fine spectroscopy (XAFS) investigations on 10 wt % Pd–16 wt % Sb/TiO2 catalyst allow new insight into the impact of the co-component Sb on the active Pd species, which catalyzes the gas-phase acetoxylation of toluene to benzyl acetate. Ex situ Pd 3d XPS and Pd L-edge XANES studies indicate the presence of an excess electron charge on metallic Pd species (more 4d electrons than in Pd metal) formed after several hours of stream. This observation was explained by the electron transfer from metallic Sb incorporated into the Pd bulk to the neighboring Pd atoms. TEM-EDX analysis confirms the presence of intermixed Pd–Sb particles with an atomic ratio of between 5 and 6 in the most active catalysts and of 3 in deactivated samples. In situ Sb-K-edge XAFS investigations provide evidence that the Pd–Sb interaction is more pronounced under reaction feed than in the ex situ samples.