Published in

Buck Institute for Age Research, Aging and Disease, 1(8), p. 7, 2017

DOI: 10.14336/ad.2016.0627

Links

Tools

Export citation

Search in Google Scholar

Potential Biochemical Mechanisms of Lung Injury in Diabetes

Journal article published in 2017 by Hong Zheng, Jinzi Wu, Zhen Jin, Liang-Jun Yan
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Accumulating evidence has shown that the lung is one of the target organs for microangiopathy in patients with either type 1 or type 2 diabetes mellitus (DM). Diabetes is associated with physiological and structural abnormalities in the diabetic lung concurrent with attenuated lung function. Despite intensive investigations in recent years, the pathogenic mechanisms of diabetic lung injury remain largely elusive. In this review, we summarize currently postulated mechanisms of diabetic lung injury. We mainly focus on the pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway. We also highlight that while numerous studies have mainly focused on tissue or cell damage in the lung, studies focusing on mitochondrial dysfunction in the diabetic lung have remained sketchy. Hence, further understanding of mitochondrial mechanisms of diabetic lung injury should provide invaluable insights into future therapeutic approaches for diabetic lung injury.