Links

Tools

Export citation

Search in Google Scholar

Mesoporous SnO2 Nanowires: Synthesis and Ethanol Sensing Properties

Journal article published in 2017 by Shan-Hong Li, Fang Meng, Zhong Chu ORCID, Tao Luo, Fu-Min Peng, Zhen Jin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The mesoporous SnO2 nanowires composed of nanoparticles and nanopores have been successfully synthesized within the nanochannels of anodic alumina oxide templates by a facile sol-gel method. XRD, SEM, and HRTEM were used to characterize the synthesized mesoporous SnO2 nanowires. The sensing property of the mesoporous SnO2 nanowires in ethanol detection also has been studied. The as-prepared product displays excellent the high sensitivity, rapid response, and excellent repeatability to ethanol. The detection limit of the mesoporous SnO2 nanowires to ethanol reaches 1 ppm. The sensing mechanism of the mesoporous SnO2 nanowires has been further discussed. It is expected that the mesoporous SnO2 nanowires might become a good sensing material for promising industrial applications.