Dissemin is shutting down on January 1st, 2025

Published in

SpringerOpen, Advanced Structural and Chemical Imaging, 1(3), 2017

DOI: 10.1186/s40679-017-0042-5

Links

Tools

Export citation

Search in Google Scholar

Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Scanning transmission electron microscopy (STEM) data with atomic resolution can contain a large amount of information about the structure of a crystalline material. Often, this information is hard to extract, due to the large number of atomic columns and large differences in intensity from sublattices consisting of different elements. In this work, we present a free and open source software tool for analysing both the position and shapes of atomic columns in STEM-images, using 2-D elliptical Gaussian distributions. The software is tested on variants of the perovskite oxide structure. By first fitting the most intense atomic columns and then subtracting them, information on all the projected sublattices can be obtained. From this, we can extract changes in the lattice parameters and shape of A-cation columns from annular dark field images of perovskite oxide heterostructures. Using annular bright field images, shifts in oxygen column positions are also quantified in the same heterostructure. The precision of determining the position of atomic columns is compared between STEM data acquired using standard acquisition, and STEM-images obtained as an image stack averaged after using non-rigid registration. ; © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.