Published in

Wiley Open Access, Journal of Cellular and Molecular Medicine, 9(16), p. 2186-2195, 2012

DOI: 10.1111/j.1582-4934.2012.01527.x

Links

Tools

Export citation

Search in Google Scholar

Analysis of molecular mechanisms and anti-tumoural effects of zoledronic acid in breast cancer cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Zoledronic acid (ZOL) is the most potent nitrogen-containing bisphosphonate (N-BPs) that strongly binds to bone mineral and acts as a powerful inhibitor of bone resorption, already clinically available for the treatment of patients with osteolytic metastases. Recent data also suggest that ZOL, used in breast cancer, may provide more than just supportive care modifying the course of the disease, though the possible molecular mechanism of action is still unclear.As breast cancer is one of the primary tumours with high propensity to metastasize to the bone, we investigated, for the first time, differential gene expression profile on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells treated with low doses of ZOL (10 μM). Microarrays analysis was used to identify, describe and summarize evidence regarding the molecular basis of actions of ZOL and of their possible direct anti-tumour effects. We validated gene expression results of specific transcripts involved in major cellular process by Real Time and Western Blot analysis and we observed inhibition of proliferation and migration through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Matrigel assay. We then focused on changes in the cytoskeletal components as fibronectin 1 (FN1), actin, and anti angiogenic compounds as transforming growth factor-β1 (TGF-β1) and thrombospondin 1 (THBS1). The up-regulation of these products may have an important role in inhibiting proliferation, invasion and angiogenesis mediated by ZOL.