Published in

Volume 1: Low/Intermediate-Level Radioactive Waste Management; Spent Fuel, Fissile Material, Transuranic and High-Level Radioactive Waste Management

DOI: 10.1115/icem2013-96080

Links

Tools

Export citation

Search in Google Scholar

Modelling Study to Evaluate Two Variants for Accessing a Deep Geological Repository From the Point of View of Long-Term Safety

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Siting a deep geological repository for radioactive waste essentially involves two interrelated steps: deciding on an appropriate geological environment for the underground facilities and selecting a suitable location for the associated surface facility. An acceptable solution is more easily achieved if some flexibility exists for siting the surface facility, irrespective of the exact position of the underground facilities. Such flexibility is available if a ramp is used as the main access route from the surface facility to the underground facilities. Another option is to use a combination of shafts and (sub)horizontal tunnels as the main access route. Both variants include shafts for ventilation, etc. In this paper, the two variants (i) main access via ramp and (ii) main access via shaft are compared in terms of long-term safety. To this end, the entire network of underground tunnels of a deep geological repository is implemented in an analytical resistor network flow model. Radionuclide release through the tunnel system and the host rock is then calculated with a numerical network transport model, using as input the results from the flow model. The results clearly indicate that, even in case of hypothetically deficient horizontal and subhorizontal sealing elements, the choice between ramp and shaft as the main access route is irrelevant to long-term safety.